DebugDatabaseReference
class DebugDatabaseReferenceDebug wrapper over DatabaseReference.
Proxies all operations (get, set, update, remove, onValue) to the underlying DatabaseReference and logs them via FirebaseDatabaseDebugger.
Properties
hashCode no setter inherited
int get hashCodeThe hash code for this object.
A hash code is a single integer which represents the state of the object that affects operator == comparisons.
All objects have hash codes. The default hash code implemented by Object represents only the identity of the object, the same way as the default operator == implementation only considers objects equal if they are identical (see identityHashCode).
If operator == is overridden to use the object state instead, the hash code must also be changed to represent that state, otherwise the object cannot be used in hash based data structures like the default Set and Map implementations.
Hash codes must be the same for objects that are equal to each other according to operator ==. The hash code of an object should only change if the object changes in a way that affects equality. There are no further requirements for the hash codes. They need not be consistent between executions of the same program and there are no distribution guarantees.
Objects that are not equal are allowed to have the same hash code. It is even technically allowed that all instances have the same hash code, but if clashes happen too often, it may reduce the efficiency of hash-based data structures like HashSet or HashMap.
If a subclass overrides hashCode, it should override the operator == operator as well to maintain consistency.
Inherited from Object.
Implementation
external int get hashCode;onValue no setter
Stream<dynamic> get onValueSubscribes to value changes at the current path.
Each update is logged as an onValue frame with direction upstream->client.
Implementation
Stream<DatabaseEvent> get onValue {
_owner.logOperation(
path: path,
op: 'listen_start',
direction: 'client->upstream',
payload: <String, dynamic>{'event': 'onValue'},
);
return _inner.onValue.map((event) {
_owner.logOperation(
path: path,
op: 'onValue',
direction: 'upstream->client',
payload: <String, dynamic>{
'exists': event.snapshot.exists,
'value': event.snapshot.value,
},
);
return event;
}).handleError((Object error) {
_owner.logOperation(
path: path,
op: 'onValue_error',
direction: 'upstream->client',
payload: null,
ok: false,
error: error,
);
});
}path no setter
String get pathDatabase path, e.g. /users/123.
Implementation
String get path => _inner.path;raw no setter
dynamic get rawThe underlying DatabaseReference without the wrapper.
Implementation
DatabaseReference get raw => _inner;runtimeType no setter inherited
Type get runtimeTypeA representation of the runtime type of the object.
Inherited from Object.
Implementation
external Type get runtimeType;Methods
child()
DebugDatabaseReference child(String childPath)Returns a debug reference to a child node at childPath.
Implementation
DebugDatabaseReference child(String childPath) {
return DebugDatabaseReference._(
owner: _owner,
inner: _inner.child(childPath),
);
}get()
Future<dynamic> get()Reads data at the current path and logs the result.
Implementation
Future<DataSnapshot> get() async {
final startedAt = DateTime.now().toUtc();
try {
final result = await _inner.get();
await _owner.logOperation(
path: path,
op: 'get',
direction: 'client->upstream',
payload: <String, dynamic>{
'exists': result.exists,
'value': result.value,
'durationMs':
DateTime.now().toUtc().difference(startedAt).inMilliseconds,
},
);
return result;
} catch (e) {
await _owner.logOperation(
path: path,
op: 'get',
direction: 'client->upstream',
payload: null,
ok: false,
error: e,
);
rethrow;
}
}noSuchMethod() inherited
dynamic noSuchMethod(Invocation invocation)Invoked when a nonexistent method or property is accessed.
A dynamic member invocation can attempt to call a member which doesn't exist on the receiving object. Example:
dynamic object = 1;
object.add(42); // Statically allowed, run-time errorThis invalid code will invoke the noSuchMethod method of the integer 1 with an Invocation representing the .add(42) call and arguments (which then throws).
Classes can override noSuchMethod to provide custom behavior for such invalid dynamic invocations.
A class with a non-default noSuchMethod invocation can also omit implementations for members of its interface. Example:
class MockList<T> implements List<T> {
noSuchMethod(Invocation invocation) {
log(invocation);
super.noSuchMethod(invocation); // Will throw.
}
}
void main() {
MockList().add(42);
}This code has no compile-time warnings or errors even though the MockList class has no concrete implementation of any of the List interface methods. Calls to List methods are forwarded to noSuchMethod, so this code will log an invocation similar to Invocation.method(#add, [42]) and then throw.
If a value is returned from noSuchMethod, it becomes the result of the original invocation. If the value is not of a type that can be returned by the original invocation, a type error occurs at the invocation.
The default behavior is to throw a NoSuchMethodError.
Inherited from Object.
Implementation
@pragma("vm:entry-point")
@pragma("wasm:entry-point")
external dynamic noSuchMethod(Invocation invocation);remove()
Future<void> remove()Removes data at the current path and logs the operation.
Implementation
Future<void> remove() async {
try {
await _inner.remove();
await _owner.logOperation(
path: path,
op: 'remove',
direction: 'client->upstream',
payload: null,
);
} catch (e) {
await _owner.logOperation(
path: path,
op: 'remove',
direction: 'client->upstream',
payload: null,
ok: false,
error: e,
);
rethrow;
}
}set()
Future<void> set(Object? value)Writes value at the current path and logs the operation.
Implementation
Future<void> set(Object? value) async {
final startedAt = DateTime.now().toUtc();
try {
await _inner.set(value);
await _owner.logOperation(
path: path,
op: 'set',
direction: 'client->upstream',
payload: <String, dynamic>{
'value': value,
'durationMs':
DateTime.now().toUtc().difference(startedAt).inMilliseconds,
},
);
} catch (e) {
await _owner.logOperation(
path: path,
op: 'set',
direction: 'client->upstream',
payload: <String, dynamic>{'value': value},
ok: false,
error: e,
);
rethrow;
}
}toString() inherited
String toString()A string representation of this object.
Some classes have a default textual representation, often paired with a static parse function (like int.parse). These classes will provide the textual representation as their string representation.
Other classes have no meaningful textual representation that a program will care about. Such classes will typically override toString to provide useful information when inspecting the object, mainly for debugging or logging.
Inherited from Object.
Implementation
external String toString();update()
Future<void> update(Map<String, Object?> value)Updates fields at the current path (merge) and logs the operation.
Implementation
Future<void> update(Map<String, Object?> value) async {
final startedAt = DateTime.now().toUtc();
try {
await _inner.update(value);
await _owner.logOperation(
path: path,
op: 'update',
direction: 'client->upstream',
payload: <String, dynamic>{
'value': value,
'durationMs':
DateTime.now().toUtc().difference(startedAt).inMilliseconds,
},
);
} catch (e) {
await _owner.logOperation(
path: path,
op: 'update',
direction: 'client->upstream',
payload: <String, dynamic>{'value': value},
ok: false,
error: e,
);
rethrow;
}
}Operators
operator ==() inherited
bool operator ==(Object other)The equality operator.
The default behavior for all Objects is to return true if and only if this object and other are the same object.
Override this method to specify a different equality relation on a class. The overriding method must still be an equivalence relation. That is, it must be:
Total: It must return a boolean for all arguments. It should never throw.
Reflexive: For all objects
o,o == omust be true.Symmetric: For all objects
o1ando2,o1 == o2ando2 == o1must either both be true, or both be false.Transitive: For all objects
o1,o2, ando3, ifo1 == o2ando2 == o3are true, theno1 == o3must be true.
The method should also be consistent over time, so whether two objects are equal should only change if at least one of the objects was modified.
If a subclass overrides the equality operator, it should override the hashCode method as well to maintain consistency.
Inherited from Object.
Implementation
external bool operator ==(Object other);